
Lecture 20 on Nov. 28 2013

We have seen the applications of the simplest Cauchy theorem in the above lectures. Today we are going to
consider its more general version.

Definition 0.1. A curve γ in Ω is said to be homogeneous to a point in Ω if γ can be deformed continuously
to the point. Analytically we have a two variable functions γ(t, s) from the rectangle [0, 1] × [0, 1] to Ω so
that γ is continuous with respect to both t variable and s variable. Moreover γ(t, 0) is a parametrization of
the curve γ and γ(t, 1) is constantly equal to the given point in Ω.

One may refer to the figure 1 to take a glance on the concept introduced above. In fact in figure 1, Ω2 is
the larger domain and Ω1 is the smaller domain inside Ω2. Our Ω is the domain in Ω2 without the domain
Ω1. For γ1 no matter how you deform γ1 to a point in Ω, you will alway intersect some points in Ω1. But
for γ2 we can do so. The difference of these two curves are the follows. For γ1, it enclose an interior region
and Ω1 is included in the region. While for γ2, Ω1 is outside the region enclosed by γ2. In the following, we
are going to show that Cauchy’s theorem still holds for curves with the same type of γ2.

Given Γ1 with positive orientation (see figure 2), we choose another curve Γ2 which is quite close to Γ1.
We seperate the region between Γ1 and Γ2 into a lot of small boxes. The size of each box is small enough so
that for each small box, we can find a disk to cover it and f is analytic in the disk. Now we zoom out the
box A and box B and choose the contour as what is shown in figure 3. Clearly by simple Cauchy thoerem,
we know that ∫

I1+I2+I3+I4

f(z) dz = 0

where f is an analytic function in a domain containing Γ1. Moreover we also have∫
J1+J2+J3+J4

f(z) dz = 0

Pay attention that I4 and J2 are interface between A and B but they have different direction. So the
integration on I4 and J2 can be cancelled with each other. Therefore if we add the above two equalities, we
get ∫

I1+I2+I3+J3+J4+J1

f(z) dz = 0.

In this new contour, the interface between A and B disappear. The same technique can be applied to the
remaining boxes and show that ∫

Γ1−Γ2

f(z) dz = 0. (0.1)

notice here Γ2 is chosen to be positively oriented. From Figure 3, we see that the curve I3 +J3 have different
orientation from I1 +J1. Therefore after cancellation of interfaces, the outer curve should be Γ1 and has the
same orientation as Γ1 but the interior curve coincide with Γ2 but have different orientation as we choose
for the Γ2. That is why we have a negative sign in front of Γ2 in (0.1). Rewriting (0.1), we obtain∫

Γ1

f(z) dz =

∫
Γ2

f(z) dz.

If Γ1 can be deformed to a point P (see Figure 2) and f is analytic on a disk around P , then we know that∫
γ

f(z) dz = 0.

Therefore we further show that ∫
Γ1

f(z) dz = 0.

Summarizing all the arguments above, we have
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Theorem 0.2. if f is analytic in a domain Ω and γ is a closed curve homogeneous to a point in Ω, then∫
γ

f(z) dz = 0.

A straightforward application of Theorem 0.2 is the so-called Laurent series. Given an annulus shown
as in Figure 4, z0 is the center. The outer circle has radius r2 and interior circle has radius r1. z is an
arbitrary point on the annulus. If f(ζ) is analytic on the annulus, then by removability of singularities,
(f(ζ) − f(z))/(ζ − z) is also analytic in the annulus with resepct to the variable ζ. Choosing the contour
I1 + I2 + I3 + I4, it is homogeneous to a point in the annulus, therefore we have by Theorem 0.2 that∫

I1+I2+I3+I4

f(ζ)− f(z)

ζ − z
dζ = 0.

I2 and 4 can be cancelled with each other since they have different direction, therefore we obtain from the
above equality that

f(z)

∫
I1+I3

1

ζ − z
dζ =

∫
I1+I3

f(ζ)

ζ − z
dζ. (0.2)

Noting that the index of z with resepct to I1 equals to 1 and the index of z with respect to I3 is 0, therefore
the left-hand side of (0.2) equals to 2πif(z). furthermore (0.2) can be rewritten as

f(z) =
1

2πi

∫
I1

f(ζ)

ζ − z
dζ +

1

2πi

∫
I3

f(ζ)

ζ − z
dζ. (0.3)

Now we deal with the integraion on I1 on the right-hand side of (0.3). clearly

1

2πi

∫
I1

f(ζ)

ζ − z
dζ =

1

2πi

∫
I1

f(ζ)

ζ − z0 + z0 − z
dζ

=
1

2πi

∫
I1

f(ζ)

ζ − z0

1

1− z−z0
ζ−z0

dζ.

Noticing that on I1, |ζ − z0| > |z − z0|, therefore it holds by geometric series that

1

2πi

∫
I1

f(ζ)

ζ − z
dζ =

1

2πi

∫
I1

f(ζ)

ζ − z0

∞∑
k=0

(
z − z0

ζ − z0

)k
dζ (0.4)

(0.5)

=

∞∑
k=0

(
1

2πi

∫
I1

f(ζ)

(ζ − z0)k+1
dζ

)
(z − z0)

k
. (0.6)

As for the integration on I3, similarly we have

1

2πi

∫
I3

f(ζ)

ζ − z
dζ =

1

2πi

∫
I3

f(ζ)

ζ − z0 + z0 − z
dζ

= − 1

2πi

∫
I3

f(ζ)

z − z0

1

1− ζ−z0
z−z0

dζ

=
1

2πi

∫
−I3

f(ζ)

z − z0

∞∑
k=0

(
ζ − z0

z − z0

)k
dζ

=

∞∑
k=0

(
1

2πi

∫
−I3

f(ζ) (ζ − z0)k dζ

)
(z − z0)−(k+1).

summarizing the above arguments, we know that
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Theorem 0.3. if f is analytic on the annulus with outer circle I1 and inner circle I3 (see figure 4), then f
can be expanded by

f(z) =

∞∑
k=−∞

Ak(z − z0)k,

where

Ak =
1

2πi

∫
Γ

f(ζ)

(ζ − z0)k+1
dζ.

Here if k = 0, 1, 2, ..., then Γ in Ak is the positively oriented outer circle I1. If k = −1,−2, ..., then Γ is the
positively oriented inner circle I3.

Using Theorem 0.3, we see that

f(z) =

−∞∑
k=−2

Ak(z − z0)k +

∞∑
k=0

Ak(z − z0)k +
A−1

z − z0
.

all functions on the right-hand side above has anti-derivatives except the function

A−1

z − z0
.

Therefore given a closed curve γ in the annulus, we can easily show that

1

2πi

∫
γ

f(z) dz =
1

2πi

∫
γ

A−1

z − z0
dz = A−1n(γ, z0). (0.7)

From the above calculations, we see that A−1 is of most important to us comparing to the other coefficients.
So we give a special name for it.

Definition 0.4. We call A−1 the residue of a given function f at z0, denoted by Res(f, z0). The expansion
in Theorem 0.3 is called Laurent series.

Before moving forward, let us study the uniqueness of the expansion in Theorem 0.3 and a little bit
generalization of (0.7).

Uniqueness of Expansion Suppose that there is another expansion of f on annulus, say

f(z) =

∞∑
k=−∞

Bk(z − z0)k,

then clearly we have

1

2πi

∫
I1

f(z) =
1

2πi

∫
I1

A−1

z − z0
=

1

2πi

∫
I1

B−1

z − z0
= A−1 = B−1.

Multiply f(z) by z − z0 and applying the same calculations, we know that

1

2πi

∫
I1

(z − z0)f(z) =
1

2πi

∫
I1

A−2

z − z0
=

1

2πi

∫
I1

B−2

z − z0
= A−2 = B−2.

Inductively we know that for any k, it holds

1

2πi

∫
I1

(z − z0)kf(z) =
1

2πi

∫
I1

A−(k+1)

z − z0
=

1

2πi

∫
I1

B−(k+1)

z − z0
= A−(k+1) = B−(k+1).

Therefore we have
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Theorem 0.5. If on a annulus f can be written as

f(z) =

∞∑
k=−∞

Bk(z − z0)k,

then it must be the Laurent series of f .

Generalization of (0.7) The generalization of (0.7) in the following is the so-called Residue theorem

Theorem 0.6. Given a closed curve γ positively oriented (see figure 5) and letting Ω is the region enclosed
by γ, if f is analytic in Ω except finitely many singularities {z1, ..., zn}, then

1

2πi

∫
γ

f(z) dz =

n∑
k=1

Res(f, zj).

The proof of this theorem is simple. using the contour in figure 5, we can easily show that

1

2πi

∫
γ

f(z) dz =

n∑
k=1

1

2πi

∫
γk

f(z) dz. (0.8)

Here in (0.8), we used the general Cauchy theorem. Then apply (0.7) to the right-hand side above, the proof
of Theorem 0.6 follows.

In light of the above arguments, we know that the most important thing in the evaluating of contour
integral for a complex function is to find out its residue. Here we give a method to search residues of some
special functions.

Case 1. In this case we assume z0 is a singularity of f and moreover

lim
z→z0

(z − z0)f(z) = c,

where c is constant. We claim that in this case c equals to the residue of f at z0. In fact, we consider the
function

g(z) = f(z)− c

z − z0
.

by the assumption above, one can easily show that

lim
z→z0

(z − z0)g(z) = 0.

Therefore applying the removability of singularity to g, we know that g is analytic at z0. In other words

f(z) =
c

z − z0
+ g(z),

where g is analytic at z0. Clearly g can be expanded by Taylor series, Therefore by the uniqueness theorem
0.5, we know that

f(z) =
c

z − z0
+ Taylor Series of g.

Clearly c is the coefficient in front of 1
z−z0 . That is the residue of f at z0.

Example 1. suppose that a 6= b are two complex numbers, then

ez

(z − a)(z − b)
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has two singularities, a and b. Since

lim
z→a

ez

(z − a)(z − b)
(z − a) = lim

z→a

ez

z − b
=

ea

a− b
.

Therefore we have

Res

(
ez

(z − a)(z − b)
, a

)
=

ea

a− b
.

Example 2. consider 1/ sin z. This function has singularities at kπ where k are all integers. by L’Hospitale
rule, we know that

lim
z→kπ

z − kπ
sin z

= (−1)k,

Therefore it holds

Res(
1

sin z
, kπ) = (−1)k.

Case 2. The functions in case 2 are powers of all functions in case 1. Since the functions in case 1
can be written as

f(z) =
c

z − z0
+ g(z)

where g(z) is analytic at z0. Therefore

(f(z))n =

(
c

z − z0
+ g(z)

)n
Using Binomial formula, we know that the higher order of the pole z0 must be n. So in order to get the
coefficient of (z − z0)−(n−1), we just need move cn/(z − z0)n to the left and calculuate the limit

lim
z→z0

(
(f(z))n − cn

(z − z0)n

)
(z − z0)n−1.

Then can we get the coefficient of A−(n−1) from the above limit. To get A−(n−2) we just need move
A−(n−1)/(z − z0)n−1 to the left and calculuate

lim
z→z0

(
(f(z))n − cn

(z − z0)n
−

A−(n−1)

(z − z0)n−1

)
(z − z0)n−2.

Inductively we can find out the coefficient A−1 in finite steps.

Example 3. 1/ sin2 z. We know that

1

sin2 z
=

(
1

z
+ g(z)

)2

,

in a neighborhood of z0 = 0. Therefore z0 = 0 is a pole of 1/ sin2 z with order 2. To get A−1 at z0 = 0, we
just need calculate

lim
z→0

z

(
1

sin2 z
− 1

z2

)
Finally one can show that the above limit is 0.
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